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Abstract

In this paper semi-infinite one- and two-dimensional (1-D and 2-D) coupled structures are considered in
order to find conditions under which coupling effects can induce hypersensitive vibrating behaviour. The
approach is based on classical wave decomposition, and the first point is to show that high sensitivity can
exist in such simple systems. Then, for the case of beams, it is shown that two critical coupling angles can be
defined, and that their values depend only on wave number ratio. A similar study is then performed on
semi-infinite coupled plates, and the existence of a critical coupling angle is shown. Its value can be
determined using three structural parameters. The results are finally compared to finite coupled structures.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Uncertainty can be a major questioning source as soon as manufacturing processes are used to
build structures. Many reports have been presented [1,2], in which people show that sensitivity
causes can be numerous in complex systems, and are not easily detectable. In our recent work [3],
a method that could help one to predict which structural zones are responsible for hypersensitive
behaviour [4] has been presented. In Refs. [4,5], a study concerning coupled plates has been used
to show that a small shift of coupling angle could induce very large variations of response, when
the nominal coupling angle has a particular value. This value depends on the characteristics of the
structure, and has been determined for only a few specific cases. In the present paper a basic study
is presented to find values of coupling angles which are in many cases responsible for vibration
sensitive behaviour. This work is based on a wave approach in semi-infinite coupled structures
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(coupled beams and coupled plates), in order that the number of structural parameters remains
low.

The first part deals with semi-infinite coupled beams. Wave approaches for this kind of
structure are well-developed, because of their simplicity, and their use is common in the field of
joints between structures. Horner and White [6] have presented equations corresponding to
coupling effects between bending and in-plane movements due to connecting angle, in terms of
transmitted and reflected powers. They show that for particular joint angle values, transmitted or
reflected power could be very sensitive to this angle. Guo [7] has shown results for models of joint
behaviour, using masses and stiffnesses. Even if its results are not interpreted in terms of
sensitivity, the equations that he developed are used here to find the conditions under which the
coupled structure is sensitive. These conditions are derived using a single structural parameter,
and linked to results concerning eigenvalues sensitivities of finite coupled beams.

The second part is comparable to the previous one, except that the structures are semi-infinite
coupled plates. Coupling effects have been described by Langley and Heron [8], while sensitive
behaviour has been observed for in-plane waves by Kil et al. [9] for small values of joint angle.
Even if the structural parameters are more numerous than coupled beams cases, the conditions
under which coupled plates can have sensitive behaviour are described in this paper and linked to
the response variability of finite plates.

2. Study of two coupled semi-infinite beams

The considered structure is built with two coupled semi-infinite identical beams, presented in
Fig. 1. Constitutive materials are supposed to be homogeneous and isotropic, and Bernoulli’s
formulation is used to describe the vibrating behaviour of the structure. Both bending and
longitudinal movements are considered, and are not independent because of the coupling angle a:
Bending movements are belonging to ðO; x1

!; y1
!Þ plane, longitudinal displacements are along

ðO; x1
!Þ and ðO; x2

!Þ axis, while coupling point is O:
The notations used for the forced waves decomposition are detailed in Appendix E.
bending movement:

* Beam number 1 (corresponding to x1o0) is supposed to be the one in which there is an incident
bending wave of unit amplitude, travelling toward the coupling point:

wiðx1Þ ¼ e�jkx1 ; ð1Þ
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Fig. 1. Two coupled semi-infinite beams.
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where j2 ¼ 1 and k ¼
ffiffiffiffi
o

p
ðrS=EIÞ1=4 is the bending wave number of the beam. One should note

that this choice of unit amplitude will bring large values of quantities if they are interpreted as
MKS values, that is why units corresponding to displacements and powers are not labelled in
figures.

Another wave exists in this beam, because of reflection effects on the coupling line. One can
distinguish its evanescent and propagative parts:

wrðx1Þ ¼ Aekx1 þ Be jkx1 ; ð2Þ

where A and B are not known.

* Beam number 2 (x2 > 0) movement is imposed by the coupling. Then, the transmitted bending
wave can be written as

wtðx2Þ ¼ Ce�kx2 þ De�jkx2 ; ð3Þ

where C and D are not known.
As far as longitudinal vibrations are concerned:

* In beam 1 a travelling reflected longitudinal wave is generated by coupling effects:

urðx1Þ ¼ Fe jlx1 ; ð4Þ

in which F is unknown and l ¼ o
ffiffiffiffiffiffiffiffiffi
r=E

p
is the longitudinal wave number of the beam.

* In beam 2, a transmitted travelling wave is generated by the coupling:

utðx2Þ ¼ Ge�jlx2 ; ð5Þ

where G is not known.

2.1. Equations

Once displacements fields are known, the generalized forces can be determined using
constitutive laws linking forces and displacement fields, which can be written for the bending
moment M; shear force T and longitudinal force N:

MðxÞ ¼ EI
d2w

dx2
; ð6Þ

TðxÞ ¼ �EI
d3w

dx3
; ð7Þ

NðxÞ ¼ ES
du

dx
: ð8Þ

These relations are valid if they are used to define cohesion forces corresponding to an external
normal oriented toward increasing x: It is also possible to define the rotation of the beam cross-
section:

OðxÞ ¼
dw

dx
: ð9Þ
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Then, one can determine each of the six unknowns, using continuity equations at the coupling
point x ¼ 0:

* Displacement continuity:

wtð0Þ ¼ ðwið0Þ þ wrð0ÞÞcos aþ urð0Þsin a; ð10Þ

utð0Þ ¼ �ðwið0Þ þ wrð0ÞÞsin aþ urð0Þcos a: ð11Þ

* Rotation continuity:

dwt

dx2
ð0Þ ¼

dðwi þ wrÞ
dx1

ð0Þ: ð12Þ

* Bending moment continuity:

EI
d2wt

dx2
2

ð0Þ ¼ EI
d2ðwi þ wrÞ

dx2
1

ð0Þ: ð13Þ

* Shear and normal forces continuity:

�EI
d3wt

dx3
2

ð0Þ ¼ �EI
d3ðwi þ wrÞ

dx3
1

ð0Þcos aþ ES
dur

dx1
ð0Þsin a; ð14Þ

ES
dut

dx2
ð0Þ ¼ EI

d3ðwi þ wrÞ
dx3

1

ð0Þsin aþ ES
dur

dx1
ð0Þcos a: ð15Þ

These six equations can be written in the following forms:

cos a cos a �1 �1 sin a 0

sin a sin a 0 0 �cos a 1

1 j 1 j 0 0

1 �1 �1 1 0 0

cos a �j cos a 1 �j �jm sin a 0

sin a �j sin a 0 0 jm cos a jm

2
6666666664

3
7777777775

A

B

C

D

F

G

2
6666666664

3
7777777775
¼

�cos a

�sin a

j

1

�j cos a

�j sin a

2
6666666664

3
7777777775
: ð16Þ

in which a is the coupling angle and the non-dimensional variable m ¼ Sl=Ik3 is the only
structural parameter, presented by Kil et al. [9] as a non-dimensional frequency, which can also be
expressed as the wave number ratio

m ¼
Sl
Ik3

¼
ES

rIo2

	 
1=4

¼
k

l
: ð17Þ
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This problem has an analytical solution:

A

B

C

D

F

G

2
6666666664

3
7777777775
¼

ð1þjm2Þsin2 a
Kða;mÞ

ð1�m2Þsin2 a�jmð1�cos aÞ2

Kða;mÞ

ð�1þjm2Þsin2 a�mð1�jÞð1�cos aÞ2

Kða;mÞ

jð1�m2Þsin2 aþ2mð1þcos aÞ2

Kða;mÞ

sin a ðmð3�jÞ�3�jÞcos aþð1þjÞðmþjÞ
Kða;mÞ

sin a ð1þjÞð�mþjÞcos a�mð3�jÞ�3�j
Kða;mÞ

2
66666666666664

3
77777777777775
; ð18Þ

with

Kða; mÞ ¼ mð3 þ 2 cos aþ 3 cos2 aÞ þ ðm2 þ jÞð1 � jÞsin2 a: ð19Þ

2.2. Application

In this section it will be shown that the behaviour of the structure can be classified into two
categories, highly sensitive to connecting angle or not. The first point is to find an indicator that
could be able to determine in which category the considered structure should be classified.

A particular case is considered. The chosen beams have the same characteristics: square sections
(1 cm � 1 cm), Young’s modulus E ¼ 2:1 � 1011 Pa; density r ¼ 7800 kg=m3; and the calculation
is performed at frequency f ¼ 100 Hz: Thus the value of the non-dimensional parameter m is 53.5.
The evolution of the amplitude of propagative waves, which are responsible for far-field structural
vibration behaviour is investigated. Fig. 2 shows the amplitudes of propagative waves versus
coupling angle a: According to Eq. (3), the continuous line is obtained by plotting the modulus of
amplitudes of the transmitted propagative bending wave (jjDjj). One should note that this value
corresponds to the choice of using unit amplitude impinging wave.

In this figure, one can define distinct zones when the coupling angle increases: if the coupling
angle is equal to zero, the incident wave is fully transmitted, since the beam is an infinite one
without any discontinuity. As soon as the value of a has a non-null value, the amplitude of the
transmitted wave quickly decreases, and for this case, sensitivity of response to coupling angle has
a large value on 0–20	 range. Then, if the coupling angle is still growing, one can define a large
angle range on which the sensitivity is very low. Beyond, another high-sensitivity behaviour zone
can be observed, and finally the amplitude of propagative transmitted wave is null when coupling
angle reaches its maximum theoretical value of 180	:

A similar analysis can be made considering bending reflected wave, and results are comparable,
excepted opposite zones corresponding to total transfer or null transfer, which are reversed
compared with transmitted waves analysis, as shown in Fig. 2.

Calculation also allows one to obtain the amplitudes of transmitted and reflected longitudinal
waves. These curves present again high-sensitivity zones when the coupling angle is close to zero
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or 180	 (see Fig. 2). However, in a vibro-acoustic process, one is mainly interested in bending
movements, which are responsible for sound radiation.

Since the considered problem can be formulated using only one variable which is the wave
number ratio m; it could be interesting to obtain an expression of a critical angle versus m; for
which response sensitivity would be maximum. In order to choose the way this critical angle
should be defined, the derivatives of propagating bending wave amplitudes are plotted with
respect to the coupling angle a: This is done in Fig. 3.

High-sensitivity zones can be found again in this figure. The first one is centered on an angle of
approximately 12	; while the second one is centered on an angle of about 170	: Unfortunately, it
is not possible to define a precise value for critical angles that would be a characteristic
information for high-sensitivity zones, since both transmitted and reflected waves do not reach
their maximum sensitivity for the same coupling angle. A way to break this limit, is to consider a
power analysis of the structure.

2.3. Power flow balance

It is possible to obtain analytical expressions for powers, but for sake of simplicity complete
expressions are not detailed here. Considered power flows are defined on the basis that the
incoming wave wi is an input power of a part of the beam of which the normal vector is oriented in
the x1o0 direction, which involves sign inversions in constitutive laws (6)–(8). This sign
convention is also valid for both transmitted and reflected power flows. Distinguishing between
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the different transmission paths:
Power transmitted by shear force:

PT ðx2Þ ¼ 1
2

Reð ’wtTtÞ; ð20Þ

PT ðx2Þ ¼ 1
2

EIok3ðjjDjj2 þ e�kx2Reð jC %De jkx2 þ %CDe�jkx2ÞÞ: ð21Þ

Power transmitted by bending moment:

PMðx2Þ ¼ 1
2 Reð ’OtMtÞ; ð22Þ

PMðx2Þ ¼ 1
2

EIok3ðjjDjj2 � e�kx2 ReðC %De jkx2 � j %CDe�jkx2ÞÞ: ð23Þ

Thus the power transmitted by shear force and bending moment depend on the point of
calculation, the total bending transmitted power is independent of x and remains constant all
along beam 2 since:

Pbending ¼ PT ðx2Þ þ PMðx2Þ ¼ EIok3jjDjj2: ð24Þ

As far as the total transmitted power is concerned, one must first take into account the third
transmission path which is due to longitudinal waves:

Plongi ¼ 1
2 Reð ’utNtÞ ¼ 1

2 olESjjGjj2: ð25Þ

Then, the total transmitted power does not depend on the point chosen for its evaluation:

Ptrans ¼ EIok3jjDjj2 þ 1
2

ESoljjGjj2: ð26Þ
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Note that this power, which is plotted versus coupling angle in Fig. 4, allows one to find again
which angle ranges are highly sensitive. One should note that the values of power, which are of the
order of 107; correspond to the use of a unit impinging wave.

As far as incident power is concerned:

Pinc ¼ 1
2

Reð ’wiTiÞ þ 1
2

Reð ’OiMiÞ; ð27Þ

Pinc ¼
1

2
Re ’wiEI

d3wi

dx3

	 

þ

1

2
Re � ’OiEI

d2wi

dx2

	 

; ð28Þ

Pinc ¼ EIok3: ð29Þ

And, finally, reflected power can be written as

Prefl ¼ 1
2

Reð ’wrTrÞ þ 1
2

Reð ’OrMrÞ þ 1
2

Reð ’urNrÞ; ð30Þ

Prefl ¼ �EIok3jjBjj2 � 1
2 ESoljjF jj2: ð31Þ

The three ways of reflection are illustrated in Fig. 5, in which one can find sensitive coupling
angle ranges.

Thus, power flow balance applied to the considered part of the structure can be easily written
since our model does not take into account any losses:

Pinc þ Prefl ¼ Ptrans; ð32Þ

where Pinc > 0; Preflo0; Ptrans > 0; which is in accordance with propagation direction of each
considered wave.
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The interest of the power analysis is that transmitted and reflected waves sensitivity to coupling
angles are identical, thanks to power balance, since incoming power does not depend on the
coupling angle value. In Fig. 6, the power derivative curve is presented, allowing one to define two
angles for which the sensitivity is very high. The first angle has a value of 10	 whereas the second
one is 172	: These results are in accordance with those concerning displacements analysis, and the
interest is that one can characterize the structure by two ‘‘critical’’ angles, around which
transmitted (or reflected) power sensitivity is large. These critical angles characterize the structure
sensitivity to coupling angle, which is due to rapid changes of power flow.

2.4. Critical angle values

It has been shown that the formulation uses only one variable, which is the wave number ratio.
Thus it is possible to calculate critical angles versus parameter m: Fig. 7 shows numerical results:
critical angle values are plotted versus m; which belongs to classical structure ranges.

One should note that the small critical angle does not always exist. Indeed, when 1
3
omo3; there

is only one maximum on sensitivity curve, which is above 90	: The limit case between existence
and non-existence of the first angle is shown in Fig. 8.

2.5. Conclusion on coupled semi-infinite beams

Finally, it has been shown that for semi-infinite coupled beams, only one structural parameter
was enough to characterize the sensitivity of the structure with respect to coupling angle. The
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existence of a critical angle is due to the rapid changes of power flow. The parameter used here is
the wave number ratio. In most cases envisaged, two critical angles can be defined, around which
the sensitivity is strong. One of these has a value lower than 45	; while the other is greater than
130	: Critical angles values have been evaluated as functions of wave number ratio.
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2.6. Analysis of finite coupled beams

Previous results have been obtained using power flow analysis of semi-infinite coupled beams,
so one can wonder if critical angles which have been defined in this way can be linked with results
concerning finite structures.

Two finite beams, which are described in Fig. 9, are coupled with an angle a; and simply
supported on both ends. Notations for this structure are detailed in Appendix E. A modal analysis
of these coupled beams is presented here.
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The equations of motion for beams 1 ðx1A½0;L1�Þ and 2 ðx2A½�L2; 0�Þ are (i ¼ 1 and 2):

riSio2wiðxiÞ � EiIi
d4wiðxiÞ

dx4
i

¼ 0;

riSio2uiðxiÞ þ EiSi
d2uiðxiÞ

dx2
i

¼ 0: ð33Þ

This is a very classical problem, its general solution can be written using this form

wiðxiÞ ¼ ai cos kixi þ bi sin kixi þ gi ch kixi þ di sh kixi; ð34Þ

uiðxiÞ ¼ ei cos lixi þ xi sin lixi; ð35Þ

in which wave numbers are

k4
i ¼

riSio2

EiIi

; ð36Þ

l2
i ¼ o2 ri

Ei

: ð37Þ

Boundary conditions at points xi ¼ 0 can be used in order to simplify the above equations by
cancelling ai; gi and xi coefficients. Coupling conditions at points x1 ¼ L1 and x2 ¼ �L2 are
similar to Eqs. (10)–(15), and allow one to obtain this linear system:

TX ¼ 0: ð38Þ

in which XT ¼ ½b1 d1 b2 d2 x1 x2� and

T ¼

sin k1L1 sh k1L1 sin k2L2 cos a sh k2L2 cos a 0 �cos l2L2 sin a

0 0 �sin k2L2 sin a �sh k2L2 sin a cos l1L1 �cos l2L2 cos a

cos k1L1 ch k1L1 �k2

k1
cos k2L2 �k2

k1
ch k2L2 0 0

�sin k1L1 sh k1L1 �k2
2

k2
1

sin k2L2
k2

2

k2
1

sh k2L2 0 0

cos k1L1 �ch k1L1 �E2I2k3
2

E1I1k3
1

cos k2L2 cos a E2I2k3
2

E1I1k3
1

ch k2L2 cos a 0 E2S2l2

E1I1k3
1

sin l2L2 sin a

0 0
E2I2k3

2

E1S1l1
cos k2L2 sin a �E2I2k3

2

E1S1l1
ch k2L2 sin a �sin l1L1

E2S2l2

E1S1l1
sin l2L2 cos a

2
6666666666664

3
7777777777775
:

ð39Þ

The eigenvalues of the structure are finally obtained with a numerical solution of the non-linear
equation detðTÞ ¼ 0:

2.7. Numerical application

The chosen characteristics are: Ei ¼ 2:1 � 1011 Pa; ri ¼ 7800 kg m�3; L1 ¼ 35 cm; L2 ¼ 27 cm:
Beams rectangular section are identical ð3 cm � 1 cmÞ: Then, numerical solution of detðTÞ ¼ 0
allows one to obtain Fig. 10, in which the 10 first eigenfrequencies of the structure are plotted
versus coupling angle a: Some of these frequencies are very sensitive to coupling angle, in
particular those corresponding to modes 4, 6, 8 and 10. One can note that these situations are
generally local modes of one beam or correspond to in-phase vibrating beams.
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2.8. Relationship between critical angle and eigenfrequency sensitivity

In Fig. 10, inflexion points are indicated, corresponding to angle for which sensitivity of
considered eigenfrequency with respect to coupling angle reaches its maximum value. Each of
these points can be used in order to define a ‘‘critical angle’’ associated with an eigenfrequency,
allowing one to calculate the corresponding wave number ratio using Eq. (17). This set of points
can be plotted in Fig. 7, which characterizes the critical angles for semi-infinite beams. This is
done in Fig. 11, on which one can observe that critical angles defined using energy considerations
of coupled semi-infinite beams are close to the ones defined using the sensitivity of
eigenfrequencies of coupled finite beams. The only point which is not really close to the original
curve is the one associated with the first mode, but as far as this particular mode is concerned, one
can observe in Fig. 10 that the variation of its eigenfrequency is quite slow when coupling angle
grows: in this kind of situation, the use of a so-defined critical angle has less meaning compared
with a more sensitive mode, like the fourth one.

2.9. Conclusions on coupled beams

An analysis of coupled beams has been carried out in order to show that the behaviour of such
a simple structure could be very sensitive to coupling angle. This phenomena has been described
using semi-infinite beams, for which it has been shown that the critical coupling angle was defined
using only one parameter, which is the wave number ratio. This analysis has been done
considering power flows, and can be validated considering finite coupled beams, for which it has
been shown that eigenfrequencies variations versus coupling angle could be linked to results
obtained with semi-infinite beams.
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3. Coupled plates study

In this section a similar study is presented, based on semi-infinite coupled identical plates.
Hypersensitivity phenomenon have been observed in coupled plates [4], that is why one can
wonder if some simple rules like the ones presented above for beams exist for coupled plates.

Notations used for the forced waves decomposition are detailed in Appendix F.

3.1. Bending movement

Suppose that an incident bending wave of incidence angle y is travelling in plate number 1, as
shown in Fig. 12. This incident wave is denoted as

wi ¼ e�jkxx�jkyy; ð40Þ

in which kx ¼ k cos y; ky ¼ k sin y and bending wave number k satisfies the dispersion equation:

k2 ¼ o

ffiffiffiffiffiffi
rh

D

r
: ð41Þ

This wave is partly reflected on plate 1, while another part is transmitted on plate 2, connecting
angle couples bending and in-plane vibrations because of the boundary conditions on the joint
line. Taking into account spatial coincidence along a coupling line and denoting ke ¼
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ cos2 y

p
the near-field wave number, reflected bending wave wr and transmitted one wt

can be written as

wr ¼ e�jkxxðAe jkyy þ BekeyÞ;

wt ¼ e�jkxxðHe�jkyy þ Ke�keyÞ: ð42Þ
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3.2. In-plane vibrations

Continuity conditions along a joint line introduce coupling effects between bending and in-
plane vibrations. Details are given in Appendix A, and complete equations and derivations can be
found in Ref. [9].

One should distinguish two types of in-plane waves, the longitudinal ones (which are parallel to
the propagation direction), with a wave number l; and the in-plane shear ones (which are
perpendicular to propagation direction), corresponding to another wave number m:

The nature of in-plane waves depends on corresponding wave number values in comparison
with imposed bending one. The most frequent situation is the case numbered 3 in Appendix A,
when x component of imposed bending wave number is greater than in-plane stress wave number:
kx > m:

In this situation, all existing in-plane waves are vanishing ones, corresponding to y components
of wave numbers:

kly ¼ j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�l2 þ k2

x

q
;

ksy ¼ j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2 þ k2

x

q
: ð43Þ

Reflected in-plane waves ur; vr and transmitted ones ut; vt can be expressed as follows:

ur ¼ e�jkxx kx

k
Ce�jklyy �

ksy

k
Pe�jksyy

	 

;

vr ¼ e�jkxx kly

k
Ce�jklyy þ

kx

k
Pe�jksyy

	 

; ð44Þ
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ut ¼ e�jkxx kx

k
Fe jklyy þ

ksy

k
Qe jksyy

	 

;

vt ¼ e�jkxx �
kly

k
Fe jklyy þ

kx

k
Qe jksyy

	 

: ð45Þ

3.3. Constitutive laws along ðO;xÞ axis

Constitutive laws can be written along ðO;xÞ axis to obtain expression of generalized forces,
rotation and bending moment using displacement fields that will be used for continuity relation
expressions:

Fx ¼
Eh

2ð1 þ nÞ
@u

@y
þ

@v

@x

	 

;

Fy ¼
Eh

ð1 � n2Þ
n
@u

@x
þ

@v

@y

	 

;

Fz ¼ � D
@3w

@y3
þ ð2 � nÞ

@3w

@x2@y

	 

; ð46Þ

Fx; Fy and Fz are line force densities in x; y and z directions.

R ¼
@w

@y
;

M ¼D
@2w

@y2
þ n

@2w

@x2

	 

: ð47Þ

R is the rotation angle and M is the bending moment.

3.4. Continuity relations

Eight continuity relations can be written on the junction line, in order to identify wave
amplitudes. These relations are

(a) Continuity of components of displacement: ur ¼ ut; vr � vt cos a� wt sin a ¼ 0; wi þ wr þ
vt sin a� wt cos a ¼ 0:

(b) Continuity of components of force: Fr
x ¼ Ft

x; Fr
y � Ft

y cos a� Ft
z sin a ¼ 0; Fi

z þ Fr
z þ

Ft
y sin a� Ft

z cos a ¼ 0:
(c) Continuity of rotation: Ri þ Rr � Rt ¼ 0 and
(d) Continuity of bending moment: Mi þ Mr � Mt ¼ 0:

These equations can be developed from waves in both plates and lead to the linear system of
wave amplitudes that can be expressed with only four independent structural parameters: Poisson
ratio n; incidence angle of bending wave y; coupling angle a and a non-dimensional parameter:

x ¼ r
h2o2

12E
: ð48Þ
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Finally inversion of the system allows one to obtain the displacement field in both plates, and
lastly to study the behaviour sensitivity as previously done for beams.

3.5. Numerical application

The considered structure is made of steel plates (E ¼ 2:1 � 1011 Pa; r ¼ 7800 kg=m3; h ¼
2 mm; n ¼ 0:3), while the frequency chosen for calculation is 500 Hz and incident angle is y ¼ 40	:
Thus the non-dimensional parameter is 1:2 � 10�7: Let us observe the bending response of the
structure, which is responsible for sound radiation, at several points of the structure, in order to
observe near and far fields. The corresponding curves are plotted using on the one hand a point on
the coupling line, since on this point evanescent and travelling waves contribute significantly to
the displacement, and on the other hand another point will be used, chosen far from the junction
in order that only propagative waves effects can be observed.

Fig. 13 shows that bending displacement is very sensitive to the coupling angle up to 10	: For
greater angles, the bending response is not sensitive to angle variation. These observations are
made for coupling angles belonging to the 0290	 range. Beyond that, one can observe similar
results to those obtained for coupled beams. These cases will be studied in Section 3.6.

As far as in-plane movements are concerned, their evolutions are plotted in Fig. 14, in which
one can see that sensitive behaviour exists also for lower coupling angles. But in the present case,
these waves are evanescent, and their amplitudes are decreasing fast when observation point
moves away from coupling line.

To define connecting angle of maximum sensitivity, a similar remark as the one done for beams
can be made: angles for which sensitivity is maximum depends on the considered wave. In order to
be rid of this difficulty, transmitted and reflected powers are studied. In Fig. 15, one can observe
that power is mainly transmitted by transverse velocity, whatever the coupling angle value may
be, while the second transmission path is due to rotation velocity. In-plane movement does not
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carry any power since associated waves are evanescent. High-sensitivity values which have been
observed for small coupling angles can be found again in power evolutions, since for flat angles,
reflected power is null, and grows up fast with coupling angle. In a complementary way,
transmitted power is maximal for flat coupling angle, then decreases until coupling angle is 5:5	;
for which power is fully reflected. Beyond, for larger angles, an equilibrium is established, and
power variation is very weak when coupling angle grows.

One should be precise that the chosen parameters correspond to case number 3 ðkx > mÞ; and for
all structures belonging to that case, evolutions of displacements and powers versus coupling
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angles are similar to those presented above. This behaviour is observed for most of structures:
indeed, kx > m corresponds to

1 � n
1 þ n

3E

4rp2

cos4 y
h2f 2

> 1: ð49Þ

If one considers steel material (E ¼ 2:1 � 1011 Pa; r ¼ 7800 kg m�3; n ¼ 0:3) or aluminum one
(E ¼ 7:2 � 1010 Pa; r ¼ 2700 kg m�3; n ¼ 0:34), the previous relation can be written as

cos4 y
h2f 2

> 10�6: ð50Þ

Thus, considering the case of many incident waves, coming from each possible incident angles,
one can see in Eq. (50) that the only waves that will induce propagative in-plane waves will have
almost normal incidence. If one applies the above equation in the case considered (h ¼ 2 mm;
f ¼ 500 Hz), the incidence angle value beyond which the in-plane far-field waves will appear is
88:2	: Then, if we consider an almost normal incident angle ð89	Þ; transmitted power will be
mainly transported by in-plane waves. For all coupling angles with values below 88:2	;
transmission will always be done by bending motion.

In order to characterize hypersensitivity, one can evaluate the critical angle when structural
parameters are varied. Like for beams, the critical angle is defined by the angle a; for which the
derivative of the transmitted (or reflected) power with respect to coupling angle, reaches its
maximum absolute value. This calculation is performed using the three structural parameters y; x
and n: The chosen ranges are 10�13oxo10�3; 0:2ono0:4 and 0	oyo90	; in order to represent
most of ‘‘classical’’ structures and material ranges. Results are shown in Figs. 16 and 17. One can
observe that in general critical angles are lower than 10	; only normal incident waves, high
frequencies calculations or plates with large thicknesses bring larger critical angles. In addition,
the influence of the Poisson ratio is very weak. If one tries to extrapolate these results to coupled
finite plates, one can suppose that incident waves will come from many directions, and that
globally there will be a range of angles for which sensitivity is important. For many situations, this
will result in one particular angle that will be more sensitive than the others, and this angle is likely
to be lower than 10	; which is in accordance with observed results [4].

3.6. Behaviour of coupled plates around a ¼ 180	

A similar study can be performed for angles around 180	; even if the results should be
interpreted with precautions, since such structures could be impossible to build. Nevertheless, the
mathematical model allows one to obtain Fig. 18, in which transmitted and reflected powers are
plotted versus coupling angle. A high-sensitivity zone can be observed near 180	; which can be
interpreted as the symmetric effect of the one studied in the previous section. A remark can be
made about the particular value a ¼ 180	: In this situation, results observed for beams are no
longer valid, since power is partly transmitted, because of effects along the x line, due to incidence
angle y; which is 40	 in the case considered. Thus, the x component of the incident wave is not
blocked by the geometry of the junction and movement is partly transmitted in plate 2.
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Fig. 16. Critical angle (degrees) versus incident angle y and non-dimensional parameter x: n ¼ 0:3:

Fig. 17. Critical angle (degrees) versus incident angle y and non-dimensional parameter x: n ¼ 0:4:
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This figure should be compared with Fig. 19, in which the incidence angle is close to 90	: In this
situation, the behaviour is close to the one observed for beams: when the coupling angle is 180	;
the transmitted power is close to zero.

The high-sensitivity zone can be characterized by the angle for which the derivative of
transmitted (or reflected) power with respect to connecting angle is maximum. This ‘‘critical’’
angle is plotted versus incident angle y and non-dimensional parameter x; for n ¼ 0:3 in Fig. 20.
The gap observed around y ¼ 35	 is due to the chosen definition of critical coupling angle, and
can be explained using Figs. 18 and 19. In Fig. 18, the critical angle is localized around 176	; on

ARTICLE IN PRESS

150 155 160 165 170 175 180
 -1

0

1

2

3

4

5

6

7

8
x 109

α (degrees)

P re
fl

150 155 160 165 170 175 180
 -10

 -8

 -6

 -4

 -2

0

2
x 109

α (degrees)

P tr
an

s

Fig. 18. Powers evolution versus coupling angle. Incident angle y ¼ 40	: (a) reflected powers, (b) transmitted powers. - -,

moment; –
; shear force; 

; in-plane (always zero since these are close field waves); –, total.

150 155 160 165 170 175 180
 -2

0

2

4

6

8

10

12

14

16
x 109

α (degrees)

P
re

fl

150 155 160 165 170 175 180
 -16

 -14

 -12

 -10

 -8

 -6

 -4

 -2

0

2
x 10 9

P
tr

an
s

α (degrees)

Fig. 19. Powers evolution versus coupling angle. Incident angle y ¼ 85	: (a) reflected powers, (b) transmitted powers. - -,

moment; –
; shear force; 

; in-plane (always zero since these are close field waves); –, total.

M. Ouisse, J.L. Guyader / Journal of Sound and Vibration 267 (2003) 809–850 829



the left part of the minimum of reflected power, while as far as the picture plotted with y ¼ 85	 is
concerned, critical angle is about 173	; but it is localized on the right part of the minimum of
reflected power. Transition between these two situations implies the existence of the gap observed
in Fig. 20.

3.7. In-plane incident waves

In order to obtain a complete description of coupled plate sensitivity phenomenon, one should
wonder if the previous results are valid for in-plane incident wave. That could be important, since
as far as finite coupled plates are concerned, all kinds of exciting waves can exist. The effects of an
incident in-plane longitudinal wave is first studied

ui ¼
kx

l
eð�jkxx�jklyyÞ;

vi ¼
kly

l
eð�jkxx�jklyyÞ: ð51Þ

This wave is supposed to reach the coupling line with an incident angle y:

kx ¼ l cos y;

kly ¼ l sin y: ð52Þ
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Fig. 20. Critical angle (belonging to 90–180	; plotted value is 180	 � acrit) versus incident angle y and non-dimensional
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Complete derivation of the equations is not presented here, but the principle is exactly the same
as in Sections 3.1 and 3.2. Corresponding systems are presented in Appendix C. All in-plane
waves are propagative ones, but as far as bending waves are concerned, one should distinguish
two cases:

* kXkx in which k is the bending wave number: k2 ¼ o
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
: In that case, propagative

bending waves exist.
* kokx then bending waves are only evanescent ones.

Note that the first case can be considered only if

h2f 2 cos4 yp9 � 106; ð53Þ

which means that most of structures satisfy this criterion, and that reflected and transmitted
bending waves are generally partly far-field ones.

Then, continuity conditions at plate junctions allow one to solve the problem, and to
find the transmitted and reflected power expressions associated with incident in-plane longitudinal
wave, like the one shown in Fig. 21. The main transmission path is in-plane waves. One
can observe that sensitive coupling angles exist, even if sensitivity values are lower than in the
previous part.

Determination of the critical angle corresponding to maximum sensitivity allows one to plot
Fig. 22. One can observe that the incident angle has a very low influence on the critical angle
value, except for low-angled waves, for which critical angle is lower than 10220	 (as far as
‘‘classical’’ structures are concerned), which is in accordance with results concerning incident
bending wave (Section 3.5).
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A similar analysis can be performed to obtain Fig. 23, which shows the corresponding results
based on incident in-plane shear wave, details in Appendix D

ui ¼ �
ksy

m
eð�jkxx�jksyyÞ;

vi ¼
kx

m
eð�jkxx�jksyyÞ; ð54Þ

with

kx ¼ m cos y;

ksy ¼ m sin y: ð55Þ

One can observe that the results are close to those noted above, except for very low incident
angles. In those cases, there is no maximum in the sensitivity curve. This phenomenon is
comparable to the one observed for coupled beams (Fig. 8).

3.8. Conclusion on semi-infinite coupled plates and extension to finite coupled plates

As far as results linked to the coupling of semi-infinite plates are concerned, there is no
configuration guaranteeing that the structure not to be hypersensitive for a given excitation.
Nevertheless, the general tendency is that structures with coupling angles close to zero or 180	 are
most likely to be hypersensitive, since a lot of configurations for which the critical angle belongs to
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Fig. 22. Critical angle (degrees) for incident in-plane longitudinal wave versus incident angle y and non-dimensional

parameter x: n ¼ 0:3:
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these ranges exist. In a general case, the three described kinds of waves can exist simultaneously,
but since most of the time bending waves have generally more power than in-plane ones, the
behaviour of the structure will be close to the first described one (incident bending wave).

The interesting point is that most of the critical angles are lower than 10	; and it means that for
finite structures, on which incident waves are coming from all directions, there should exist a mean
angle for which the structure is very sensitive to coupling angle. This mean angle depends on
structure characteristics, but it is possible to affirm that in many cases it will be on the 0210	

range. Of course this result is a general trend and particular values of structural parameters or
excitation could imply that critical angle is greater than 10	:

This can be verified using results obtained by R!ebillard and Guyader [5], concerning the
analysis of two finite plates, which are coupled with an angle f: Dimensions of the structure are
given in Fig. 24. A sensitivity indicator is defined using the transfer mobility between two points
(A and B). The mobility Y ðA;B;fÞ is the ratio of normal velocity at point B to normal force at
point A: Its variation is denoted dY ðA;B; dfÞ when the coupling angle varies. The sensitivity
indicator aðf; dfÞ is then defined as

aðf; dfÞ ¼
dY ðA;B; dfÞ

Y ðA;B;fÞ










: ð56Þ

Fig. 25, reproduced from Ref. [5], represents variation of a at 500 Hz when the value of df is
one degree. In this case, maximum sensitivity is obtained for a coupling value of 7:5	:
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If one tries to compare this result with the one obtained for semi-infinite plates, one should
consider the non-dimensional parameter 48, whose value in the considered case is x ¼ 1:23 �
10�7: Fig. 26 represents a cut of Fig. 16 for such a value of x: it is not easy to infer from it a
particular value for critical angle, since it depends on incident angle.

A simplified approach can be performed assuming that there is a direct combination of waves
coming directly from point A to the coupling line, resulting in a global critical angle which is the
mean of critical angles taken into account:

acrit mean ¼
1

Dy

Z
Dy

acritðyÞ dy: ð57Þ
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In the considered case:

acrit mean ¼
1

ð41 þ 49:6Þ

Z 90

41

acritðyÞ dyþ
Z 90

49:6
acritðyÞ dy

	 

: ð58Þ

Indeed, the estimated critical angle for the plate considered has a value of 6:9	; which is close to
the real one (7:5	). This allows one to justify the previous analysis performed on semi infinite
plates.

4. Conclusions

For both structures considered (semi-infinite coupled beams and plates), a critical angle can be
defined, for which the sensitivity of the transmitted (and reflected) power with respect to coupling
angle is maximum. Its existence is related to rapid changes in the transmission paths, which are
clearly identified by a power flow analysis. The value of this angle depends on the characteristics
of both structure and excitation, but is often smaller than 10	; or close to 180	: As far as the case
of beams is concerned, the wave number ratio is sufficient to know the critical angle value, where
as three parameters are necessary in the case of coupled semi-infinite plates. These results can be
used in order to understand the behaviour of finite structures, in which various kinds of waves
exist, with many incidences, and the above results indicate that it often results in the existence of a
critical angle whose value is lower than 10	:
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Appendix A. In-plane vibrations

Continuity conditions along joint line introduce coupling effects between bending and in-plane
vibrations. In-plane equations have been developed in Ref. [9], corresponding to the governing
equations:

@2u

@x2
þ

1 � n
2

@2u

@y2
þ

1 þ n
2

@2v

@x@y
¼ �

ð1 � n2Þ
E

ro2u; ðA:1Þ

@2v

@x2
þ

1 � n
2

@2v

@y2
þ

1 þ n
2

@2u

@x@y
¼ �

ð1 � n2Þ
E

ro2v: ðA:2Þ

The general solution, using variable separation, can written in the following terms:

u ¼ ul þ us;

v ¼ vl þ vs;

where one can distinguish two types of in-plane waves, the longitudinal ones (which are parallel to
propagation direction)

ul ¼ klxðAle
ð�jklxx�jklyyÞ � Ble

ðjklxx�jklyyÞ þ Cle
ð�jklxxþjklyyÞ � Dle

ðjklxxþjklyyÞÞ;

vl ¼ klyðAle
ð�jklxx�jklyyÞ þ Ble

ðjklxx�jklyyÞ � Cle
ð�jklxxþjklyyÞ � Dle

ðjklxxþjklyyÞÞ;

with k2
lx þ k2

ly ¼ l2 ¼ ro2ð1 � n2Þ=E and the in-plane shear ones (which are perpendicular to
propagation direction):

us ¼ ksyð�Ase
ð�jksxx�jksyyÞ � Bse

ðjksxx�jksyyÞ þ Cse
ð�jksxxþjksyyÞ þ Dse

ðjksxxþjksyyÞÞ;

vs ¼ ksxðAse
ð�jksxx�jksyyÞ � Bse

ðjksxx�jksyyÞ þ Cse
ð�jksxxþjksyyÞ � Dse

ðjksxxþjksyyÞÞ;

in which k2
sx þ k2

sy ¼ m2 ¼ 2ro2ð1 þ nÞ=E:
These expressions can be simplified by taking into account the fact that the plates considered

plates semi-infinite, and that displacement fields should be spatially coincident along the x-axis
with bending fields:

klx ¼ kx and ksx ¼ kx:

Then, one should distinguish three cases:
Case 1: Longitudinal wave number value is greater than x component of imposed bending wave

number, lXkx: Suppose that the materials considered are such that the Poisson ratio n is lower
than 0.5, thus the in-plane stress m wave number is always greater than the longitudinal wave
number l; and for the case considered, it leads to m > kx since m ¼ 2ð1 � nÞl:

Then, the y components of in-plane wave number values are fixed and are real and positive.

kly ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � k2

x

q
;

ksy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � k2

x

q
:
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Corresponding waves are propagative ones, and taking into account spatial coincidence,
reflected in-plane waves can be expressed as

ur ¼ e�jkxx kx

k
Ce jklyy þ

ksy

k
Pe jksyy

	 

;

vr ¼ e�jkxx �
kly

k
Ce jklyy þ

kx

k
Pe jksyy

	 

:

And as far as transmitted in-plane waves are concerned:

ut ¼ e�jkxx kx

k
Fe�jklyy �

ksy

k
Qe�jksyy

	 

;

vt ¼ e�jkxx kly

k
Fe�jklyy þ

kx

k
Qe�jksyy

	 

:

Case 2: x Component of imposed bending wave number is greater than longitudinal wave number
and smaller than in-plane stress wave number, mXkx > l: This implies that longitudinal wave is a
close-field one, while in-plane stress wave is a propagative one:

kly ¼ j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�l2 þ k2

x

q
;

ksy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � k2

x

q
:

Reflected waves can be expressed like this:

ur ¼ e�jkxx kx

k
Ce�jklyy þ

ksy

k
Pe jksyy

	 

;

vr ¼ e�jkxx kly

k
Ce�jklyy þ

kx

k
Pe jksyy

	 

;

and as far as transmitted in-plane waves are concerned:

ut ¼ e�jkxx kx

k
Fe jklyy �

ksy

k
Qe�jksyy

	 

;

vt ¼ e�jkxx �
kly

k
Fe jklyy þ

kx

k
Qe�jksyy

	 

:

Case 3: x Component of imposed bending wave number is greater than in-plane stress wave
number, kx > m: All existing in-plane waves are close-field ones.

kly ¼ j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�l2 þ k2

x

q
;

ksy ¼ j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2 þ k2

x

q
:
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Reflected waves can be expressed like this:

ur ¼ e�jkxx kx

k
Ce�jklyy �

ksy

k
Pe�jksyy

	 

;

vr ¼ e�jkxx kly

k
Ce�jklyy þ

kx

k
Pe�jksyy

	 

;

and as far as transmitted in-plane waves are concerned:

ut ¼ e�jkxx kx

k
Fe jklyy þ

ksy

k
Qe jksyy

	 

;

vt ¼ e�jkxx �
kly

k
Fe jklyy þ

kx

k
Qe jksyy

	 

:

Appendix B. Linear system for incident bending wave

In this appendix linear systems according to the three cases considered are presented.

* Case 1: m > lXkx:
* Case 2: mXkx > l:
* Case 3: kx > m > l:

A linear system is denoted T:X ¼ b; in which Xt ¼ ½A B C F H K P Q�; corresponding to waves
amplitudes defined in Sections 3.1 and 3.2. T is an ð8 � 8Þ matrix, its expression depends on the
case considered:

T ¼
T11 T12

T21 T22

" #
:

Case 1:

T11 ¼

0 0 kx

k
�kx

k

0 0
kly

k

kly

k
cos a

1 1 0
kly

k
sin a

0 0 2
kxkly

k2 2
kxkly

k2

2
666664

3
777775;

T12 ¼

0 0
ksy

k

ksy

k

sin a sin a �kx

k
kx

k
cos a

�cos a �cos a 0 kx

k
sin a

0 0
k2

sy�k2
x

k2

ðk2
x�k2

syÞ
k2

2
666664

3
777775;
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T21 ¼

0 0 j
ðk2

ly
þnk2

xÞ

k2 �j
ðk2

ly
þnk2

xÞ

k2 cos a

j
Dð�1þn2Þkyðk2

yþð2�nÞk2
xÞ

Ehk

Dð�1þn2Þkeðk2
eþð2�nÞk2

xÞ
Ehk

0 j
ðk2

ly
þnk2

xÞ

k2 sin a

j
ky

k
ke

k
0 0

ðk2
yþnk2

xÞ
k2

ð�k2
eþnk2

xÞ
k2 0 0

2
6666664

3
7777775
;

T22 ¼

j
Dð�1þn2Þkyðk2

yþð2�nÞk2
xÞ

Ehk
sin a Dð�1þn2Þkeð�k2

eþð2�nÞk2
xÞ

Ehk
sin a j

kxksyðn�1Þ
k2 j

kxksyðn�1Þ
k2 cos a

j
Dð�1þn2Þkyðk2

yþð2�nÞk2
xÞ

Ehk
cos a Dð�1þn2Þkeð�k2

eþð2�nÞk2
xÞ

Ehk
cos a 0 j

kxksyðn�1Þ
k2 sin a

0 j
ky

k
ke

k
0

0
�k2

y�nk2
x

k2

k2
e�nk2

x

k2 0

2
6666664

3
7777775
:

Case 2:

T11 ¼

0 0 kx

k
�kx

k

0 0 �kly

k
�kly

k
cos a

1 1 0 �kly

k
sin a

0 0 �2
kxkly

k2 �2
kxkly

k2

2
666664

3
777775;

T12 ¼

0 0
ksy

k

ksy

k

sin a sin a �kx

k
kx

k
cos a

�cos a �cos a 0 kx

k
sin a

0 0
ðk2

sy�k2
xÞ

k2

ðk2
x�k2

syÞ
k2

2
666664

3
777775;

T21 ¼

0 0 j
k2

ly
þnk2

x

k2 �j
k2

ly
þnk2

x

k2 cos a

j
Dð�1þn2Þkyðk2

yþð2�nÞk2
xÞ

Ehk

Dð�1þn2Þkeðk2
eþð2�nÞk2

xÞ
Ehk

0 j
k2

ly
þnk2

x

k2 sin a

j
ky

k
ke

k
0 0

k2
yþnk2

x

k2

�k2
eþnk2

x

k2 0 0

2
6666664

3
7777775
;

T22 ¼

j
Dð�1þn2Þkyðk2

yþð2�nÞk2
xÞ

Ehk
sin a Dð�1þn2Þkeð�k2

eþð2�nÞk2
xÞ

Ehk
sin a j

kxksyðn�1Þ
k2 j

kxksyðn�1Þ
k2 cos a

j
Dð�1þn2Þkyðk2

yþð2�nÞk2
xÞ

Ehk
cos a Dð�1þn2Þkeð�k2

eþð2�nÞk2
xÞ

Ehk
cos a 0 j

kxksyðn�1Þ
k2 sin a

0 j
ky

k
ke

k
0

0
�k2

y�nk2
x

k2

k2
e�nk2

x

k2 0

2
6666664

3
7777775
:
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Case 3:

T11 ¼

0 0 kx

k
�kx

k

0 0 �kly

k
�kly

k
cos a

1 1 0 �kly

k
sin a

0 0 �2
kxkly

k2 �2
kxkly

k2

2
666664

3
777775;

T12 ¼

0 0 �ksy

k
�ksy

k

sin a sin a �kx

k
kx

k
cos a

�cos a �cos a 0 kx

k
sin a

0 0
ðk2

sy�k2
xÞ

k2

ðk2
x�k2

syÞ
k2

2
666664

3
777775;

T21 ¼

0 0 j
k2

ly
þnk2

x

k2 �j
k2

ly
þnk2

x

k2 cos a

j
Dð�1þn2Þkyðk2

yþð2�nÞk2
xÞ

Ehk

Dð�1þn2Þkeðk2
eþð2�nÞk2

xÞ
Ehk

0 j
k2

ly
þnk2

x

k2 sin a

j
ky

k
ke

k
0 0

k2
yþnk2

x

k2

�k2
eþnk2

x

k2 0 0

2
6666664

3
7777775
;

T22 ¼

j
Dð�1þn2Þkyðk2

yþð2�nÞk2
xÞ

Ehk
sin a Dð�1þn2Þkeð�k2

eþð2�nÞk2
xÞ

Ehk
sin a �j

kxksyðn�1Þ
k2 �j

kxksyðn�1Þ
k2 cos a

j
Dð�1þn2Þkyðk2

yþð2�nÞk2
xÞ

Ehk
cos a Dð�1þn2Þkeð�k2

eþð2�nÞk2
xÞ

Ehk
cos a 0 �j

kxksyðn�1Þ
k2 sin a

0 j
ky

k
ke

k
0

0
�k2

y�nk2
x

k2

k2
e�nk2

x

k2 0

2
6666664

3
7777775
;

and b is the term corresponding to incident wave:

b ¼

0

0

�1

0

0

j
Dð�1þn2Þkyðk2

yþð2�nÞk2
xÞ

Ehk

j
ky

k

ð�k2
yþnk2

xÞ
k2

2
66666666666666664

3
77777777777777775

:
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One can easily show that this linear system can be written using only four parameters:, a non-
dimensional parameter x ¼ rh2o2=12E; the Poisson ratio n; connecting angle a and incident angle
y: Expressions of variables used above are

kx

k
¼ cos y;

ky

k
¼ sin y;

l4

k4
¼ ð1 � n2Þr

h2o2

12E
¼ ð1 � n2Þx;

m4

k4
¼

4

ð1 � nÞ2
l4

k4
¼ 4

ð1 þ nÞ
ð1 � nÞ

x;

k2
e

k2
¼ 1 þ cos2 y;

k2
ly

k2
¼

l2

k2
�

k2
x

k2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � n2Þx

p
� cos2 y;

k2
sy

k2
¼

m2

k2
�

k2
x

k2
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ n
1 � n

x

r
� cos2 y;

Dk2

Eh
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x

1 � n2

r
:

Appendix C. In-plane incident wave

The considered incident wave is an in-plane longitudinal one of unit amplitude:

ui ¼
kx

l
eð�jkxx�jklyyÞ;

vi ¼
kly

l
eð�jkxx�jklyyÞ:

Its incidence angle is denoted y:

kx ¼ l cos y;

kly ¼ l sin y;

in which l is the longitudinal wave number: l2 ¼ ro2ð1 � n2Þ=E:
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Reflected and transmitted in-plane waves are

ur ¼ e�jkxx kx

k
Ce jklyy þ

ksy

k
Pe jksyy

	 

;

vr ¼ e�jkxx �
kly

k
Ce jklyy þ

kx

k
Pe jksyy

	 

;

ut ¼ e�jkxx kx

k
Fe�jklyy �

ksy

k
Qe�jksyy

	 

;

vt ¼ e�jkxx kly

k
Fe�jklyy þ

kx

k
Qe�jksyy

	 

:

Considered materials are such that the in-plane shear wave number m ¼ 2ð1 � nÞl is greater
than l; then all in-plane waves are propagative.

As far as bending waves are concerned, one should distinguish two cases:

* Case 1: kXkx in which k is the bending wave number: k2 ¼ o
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
:

Thus ky ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

x

p
and ke ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k þ k2

x

p
correspond to travelling and near-field parts of reflected

and transmitted bending waves:

wr ¼ e�jkxxðAe jkyy þ BekeyÞ;

wt ¼ e�jkxxðHe�jkyy þ Ke�keyÞ:

Linear system obtained using continuity relations along coupling line is denoted T:X ¼ b; in
which Xt ¼ ½A B C F H K P Q�; corresponding to waves amplitudes defined above. T is an ð8 � 8Þ
matrix:

T ¼
T11 T12

T21 T22

" #
;

T11 ¼

0 0 kx

l �kx

l

0 0 �kly

l �kly

l cos a

1 1 0
kly

l sin a

0 0 2
kxkly

lk
2

kxkly

lk

2
666664

3
777775;

T12 ¼

0 0
ksy

l
ksy

l

�sin a �sin a kx

l �kx

l cos a

�cos a �cos a 0 kx

l sin a

0 0
ðk2

sy�k2
xÞ

kl
ðk2

x�k2
syÞ

kl

2
666664

3
777775;
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T21 ¼

0 0 j
k2

ly
þnk2

x

lk
�j

k2
ly
þnk2

x

lk
cos a

j
Dkyðk2

yþð2�nÞk2
xÞ

Ehk

Dkeð�k2
eþð2�nÞk2

xÞ
Ehk

0 j
k2

ly
þnk2

x

lkð�1þn2Þ sin a

j
ky

k
ke

k
0 0

k2
y þ nk2

x �k2
e þ nk2

x 0 0

2
6666664

3
7777775
;

T22 ¼

j
Dð�1þn2Þkyðk2

yþð2�nÞk2
xÞ

Ehk
sin a Dð�1þn2Þkeð�k2

eþð2�nÞk2
xÞ

Ehk
sin a j

kxksyðn�1Þ
kl j

kxksyðn�1Þ
kl cos a

j
Dkyðk2

yþð2�nÞk2
xÞ

Ehk
cos a Dkeð�k2

eþð2�nÞk2
xÞ

Ehk
cos a 0 �j

kxksy

klð1þnÞ sin a

j
ky

k
ke

k
0 0

�k2
y � nk2

x k2
e � nk2

x 0 0

2
6666664

3
7777775
;

and the vector b is

b ¼

�kx

l

�ky

l

0

2
kxkly

lk

�j
ðk2

ly
þnk2

xÞ

kl

0

0

0

2
66666666666666664

3
77777777777777775

:

* Case 2: kokx

All bending waves are near field ones, with wave numbers ky ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x � k2
p

and ke ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k þ k2

x

p
:

wr ¼ e�jkxxðAekyy þ BekeyÞ;

wt ¼ e�jkxxðHe�kyy þ Ke�keyÞ:

Linear system obtained using continuity relations along coupling line is denoted T:X ¼ b; in
which XT ¼ ½A B C F H K P Q�; corresponding to waves amplitudes defined above. T is a
ð8 � 8Þ matrix:

T ¼
T11 T12

T21 T22

" #
:
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Components of T11 and T12 are similar to those given in case 1.

T21 ¼

0 0 j
ðk2

ly
þnk2

xÞ

lk
�j

ðk2
ly
þnk2

xÞ

lk
cos a

Dkyð�k2
yþð2�nÞk2

xÞ
Ehk

Dkeð�k2
eþð2�nÞk2

xÞ
Ehk

0 j
ðk2

ly
þnk2

xÞ

lkð�1þn2Þ sin a
ky

k
ke

k
0 0

ð�k2
y þ nk2

xÞ ð�k2
e þ nk2

xÞ 0 0

2
6666664

3
7777775
;

T22 ¼

Dð�1þn2Þkyð�k2
yþð2�nÞk2

xÞ
Ehk

sin a Dð�1þn2Þkeð�k2
eþð2�nÞk2

xÞ
Ehk

sin a j
kxksyðn�1Þ

kl j
kxksyðn�1Þ

kl cos a
Dkyð�k2

yþð2�nÞk2
xÞ

Ehk
cos a Dkeð�k2

eþð2�nÞk2
xÞ

Ehk
cos a 0 �j

kxksy

klð1þnÞ sin a
ky

k
ke

k
0 0

k2
y � nk2

x k2
e � nk2

x 0 0

2
6666664

3
7777775
:

Appendix D. In-plane shear incident wave

The imposed wave is a travelling in-plane shear one:

ui ¼ �
ksy

m
e�jkxx�jksyy;

vi ¼
kx

m
e�jkxx�jksyy:

Its incidence is denoted y:

kx ¼ m cos y;

ksy ¼ m sin y;

in which m2 ¼ 2ro2ð1 þ nÞ=E; k2 ¼ o
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
and ke ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k þ k2

x

p
:

Three cases can be distinguished:

* Case 1: k > lXkx

Then ky ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

x

p
and kly ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � k2

x

q
:

Reflected waves are

wr ¼ e�jkxxðAe jkyy þ BekeyÞ;

ur ¼ e�jkxx kx

k
Ce jklyy þ

ksy

k
Pe jksyy

	 

;

vr ¼ e�jkxx �
kly

k
Ce jklyy þ

kx

k
Pe jksyy

	 

:
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Transmitted waves are

wt ¼ e�jkxxðHe�jkyy þ Ke�keyÞ;

ut ¼ e�jkxx kx

k
Fe�jklyy �

ksy

k
Qe�jksyy

	 

;

vt ¼ e�jkxx kly

k
Fe�jklyy þ

kx

k
Qe�jksyy

	 

:

All existing waves are travelling ones.
Linear system obtained using continuity relations along coupling line is denoted T:X ¼ b; in

which Xt ¼ ½A B C F H K P Q�; corresponding to waves amplitudes defined above. T is an
ð8 � 8Þ matrix:

T ¼
T11 T12

T21 T22

" #
;

T11 ¼

0 0 kx

k
�kx

k

0 0 �kly

k
�kly

k
cos a

1 1 0
kly

k
sin a

0 0 2
kxkly

k2 2
kxkly

k2

2
666664

3
777775;

T12 ¼

0 0
ksy

k

ksy

k

�sin a �sin a kx

k
�kx

k
cos a

�cos a �cos a 0 kx

k
sin a

0 0
ðk2

sy�k2
xÞ

k2

ðk2
x�k2

syÞ
k2

2
666664

3
777775;

T21 ¼

0 0 j
k2

ly
þnk2

x

k2 �j
k2

ly
þnk2

x

k2 cos a

j
Dkyðk2

yþð2�nÞk2
xÞ

Ehk

Dkeð�k2
eþð2�nÞk2

xÞ
Ehk

0 j
k2

ly
þnk2

x

ð�1þn2Þ sin a

j
ky

k
ke

k
0 0

k2
yþnk2

x

k2

�k2
eþnk2

x

k2 0 0

2
66666664

3
77777775
;

T22 ¼

j
Dð�1þn2Þkyðk2

yþð2�nÞk2
xÞ

Ehk
sin a Dð�1þn2Þkeð�k2

eþð2�nÞk2
xÞ

Ehk
sin a j

kxksyðn�1Þ
k2 j

kxksyðn�1Þ
k2 cos a

j
Dkyðk2

yþð2�nÞk2
xÞ

Ehk
cos a Dkeð�k2

eþð2�nÞk2
xÞ

Ehk
cos a 0 �j

kxksy

ð1þnÞk2 sin a

j
ky

k
ke

k
0 0

ð�k2
y � nk2

xÞ ðk2
e � nk2

xÞ 0 0

2
6666664

3
7777775
;
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and the vector b is

b ¼

ksy

m

�kx

m

0

ðk2
x�k2

syÞ
mk

j
ksykxðn�1Þ

km

0

0

0

2
666666666666666664

3
777777777777777775

:

* Case 2: kXkx > l

Then ky ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

x

p
and kly ¼ j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x � l2
q

:
Reflected waves are

wr ¼ e�jkxxðAe jkyy þ BekeyÞ;

ur ¼ e�jkxx kx

k
Ce�jklyy þ

ksy

k
Pe jksyy

	 

;

vr ¼ e�jkxx kly

k
Ce�jklyy þ

kx

k
Pe jksyy

	 

:

Transmitted waves are

wt ¼ e�jkxxðHe�jkyy þ Ke�keyÞ;

ut ¼ e�jkxx kx

k
Fe jklyy �

ksy

k
Qe�jksyy

	 

;

vt ¼ e�jkxx �
kly

k
Fe jklyy þ

kx

k
Qe�jksyy

	 

:

All waves are travelling ones, except in-plane longitudinal ones.
Linear system obtained using continuity relations along coupling line is denoted T:X ¼ b; in

which Xt ¼ ½A B C F H K P Q�; corresponding to waves amplitudes defined above. T is an
ð8 � 8Þ matrix:

T ¼
T11 T12

T21 T22

" #
;
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T11 ¼

0 0 kx

k
�kx

k

0 0
kly

k

kly

k
cos a

1 1 0 �kly

k
sin a

0 0 �2
kxkly

k2 �2
kxkly

k2

2
666664

3
777775;

T12 ¼

0 0
ksy

k

ksy

k

�sin a � sin a kx

k
�kx

k
cos a

�cos a � cos a 0 kx

k
sin a

0 0
ðk2

sy�k2
xÞ

k2

ðk2
x�k2

syÞ
k2

2
666664

3
777775;

T21 ¼

0 0 j
k2

ly
þnk2

x

k2 �j
k2

ly
þnk2

x

k2 cos a

j
Dkyðk2

yþð2�nÞk2
xÞ

Ehk

Dkeð�k2
eþð2�nÞk2

xÞ
Ehk

0 j
k2

ly
þnk2

x

ð�1þn2Þ sin a

j
ky

k
ke

k
0 0

k2
yþnk2

x

k2

�k2
eþnk2

x

k2 0 0

2
66666664

3
77777775
;

T22 ¼

j
Dð�1þn2Þkyðk2

yþð2�nÞk2
xÞ

Ehk
sin a Dð�1þn2Þkeð�k2

eþð2�nÞk2
xÞ

Ehk
sin a j

kxksyðn�1Þ
k2 j

kxksyðn�1Þ
k2 cos a

j
Dkyðk2

yþð2�nÞk2
xÞ

Ehk
cos a Dkeð�k2

eþð2�nÞk2
xÞ

Ehk
cos a 0 �j

kxksy

ð1þnÞk2 sin a

j
ky

k
ke

k
0 0

�k2
y � nk2

x k2
e � nk2

x 0 0

2
6666664

3
7777775
:

* Case 3: kx > k > l

Then ky ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x � k2
p

and kly ¼ j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x � l2
q

:
Reflected waves are

wr ¼ e�jkxxðAekyy þ BekeyÞ;

ur ¼ e�jkxx kx

k
Ce�jklyy þ

ksy

k
Pe jksyy

	 

;

vr ¼ e�jkxx kly

k
Ce�jklyy þ

kx

k
Pe jksyy

	 

:

Transmitted waves are

wt ¼ e�jkxxðHe�kyy þ Ke�keyÞ;

ut ¼ e�jkxx kx

k
Fe jklyy �

ksy

k
Qe�jksyy

	 

;
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vt ¼ e�jkxx �
kly

k
Fe jklyy þ

kx

k
Q e�jksyy

	 

:

All waves are near-field ones, except in-plane shear ones.
Linear system obtained using continuity relations along coupling line is denoted T:X ¼ b; in

which Xt ¼ ½A B C F H K P Q�; corresponding to waves amplitudes defined above. T is an
ð8 � 8Þ matrix:

T ¼
T11 T12

T21 T22

" #
;

T11 ¼

0 0 kx

k
�kx

k

0 0
kly

k

kly

k
cos a

1 1 0 �kly

k
sin a

0 0 �2
kxkly

k2 �2
kxkly

k2

2
666664

3
777775;

T12 ¼

0 0
ksy

k

ksy

k

�sin a �sin a kx

k
�kx

k
cos a

�cos a �cos a 0 kx

k
sin a

0 0
ðk2

sy�k2
xÞ

k2

ðk2
x�k2

syÞ
k2

2
666664

3
777775;

T21 ¼

0 0 j
k2

ly
þnk2

x

k2 �j
k2

ly
þnk2

x

k2 cos a
Dkyð�k2

yþð2�nÞk2
xÞ

Ehk

Dkeð�k2
eþð2�nÞk2

xÞ
Ehk

0 j
k2

ly
þnk2

x

ð�1þn2Þ sin a
ky

k
ke

k
0 0

�k2
yþnk2

x

k2

�k2
eþnk2

x

k2 0 0

2
66666664

3
77777775
;

T22 ¼

Dð�1þn2Þkyð�k2
yþð2�nÞk2

xÞ
Ehk

sin a Dð�1þn2Þkeð�k2
eþð2�nÞk2

xÞ
Ehk

sin a j
kxksyðn�1Þ

k2 j
kxksyðn�1Þ

k2 cos a
Dkyð�k2

yþð2�nÞk2
xÞ

Ehk
cos a Dkeð�k2

eþð2�nÞk2
xÞ

Ehk
cos a 0 �j

kxksy

ð1þnÞk2 sin a
ky

k
ke

k
0 0

k2
y � nk2

x k2
e � nk2

x 0 0

2
6666664

3
7777775
:

Appendix E. Notations for Section 2

ðO; x1
!Þ neutral axis of beam 1

y1
! flexural axis of beam 1
ðO; x2

!Þ neutral axis of beam 2
y2
! flexural axis of beam 2
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ðO;~zzÞ common normal axis to ðO; x1
!; y1

!Þ and ðO; x2
!; y2

!Þ planes
a coupling angle
w1 flexural displacement of beam 1
w2 flexural displacement of beam 2
k flexural wave number
o frequency of excitation (rad/s)
S beams sections
E Young’s modulus
I moment of inertia of the beam
u1 longitudinal displacement of beam 1
u2 longitudinal displacement of beam 2
l longitudinal wave number
r density
M bending moment
T shear force
N longitudinal force
O rotation of the beam cross-section
m wave number ratio
f frequency of excitation (Hz)
PT power transmitted by shear force
PM power transmitted by bending moment
Pbending power transmitted by bending movement
Plongi power transmitted by longitudinal movement
Ptrans total transmitted power
Pinc incident power
Prefl reflected power
acrit critical angle value
Li length of beam i

Appendix F. Notations for Section 3

~xx coupling line axis
ð~xx; y0

!Þ first plate plane
z0
! normal axis to plate 1
ð~xx; y1

!Þ second plate plane
z1
! normal axis to plate 2
a coupling angle
y incident angle of exciting wave
u; v and w displacement components
k flexural wave number
o frequency (rad/s)
r density of material
E Young’s modulus of material
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h common thickness of plates
D flexural rigidity of plates: D ¼ Eh3=12ð1 � n2Þ
n the Poisson ratio of material
l in-plane longitudinal wave number
m in-plane shear wave number
x non-dimensional parameter x ¼ rh2o2=12E
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